

Journal of Fluorine Chemistry 69 (1994) 237-240

Reactions of cycloalkanecarboxylic acids with SF_4 . III. Fluorination of cyclobutane- and cyclopentane-tetracarboxylic acids with SF_4^{\star}

Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian*

The Ukrainian Academy of Sciences, Institute of Organic Chemistry, Kiev 252094, Ukraine

Received 14 May 1993; accepted 4 October 1993

Abstract

Fluorination of cyclobutane- and cyclopentane-polycarboxylic acids having carboxylic groups in *cis* positions with SF₄ yields mainly cyclization products, i.e. cyclic $\alpha, \alpha, \alpha', \alpha'$ -tetrafluoroethers. 1,3-Cyclization was observed during fluorination of cyclopentanetetracarboxylic acids.

Keywords: Cycloalkanecarboxylic acids; Sulphur tetrafluoride; Cyclization; Stereochemistry; NMR spectroscopy

1. Introduction

The formation of cyclic $\alpha, \alpha, \alpha', \alpha'$ -tetrafluoroethers during the fluorination of polycarboxylic acids with SF₄ is governed mainly by steric factors, i.e. by the mutual separation and spatial configuration of the carboxylic groups [1–3]. With acyclic polycarboxylic acids containing carboxylic groups at the 1,2- and 1,3-positions, the formation of the corresponding 5- and 6-member cyclic $\alpha, \alpha, \alpha', \alpha'$ -tetrafluoroethers has been observed in low yield [4].

2. Experimental

¹H and ¹⁹F NMR spectra were measured with a Bruker WP-200 NMR spectrometer using TMS and CFCl₃ as respective internal standards and acetone- d_6 as the solvent. Upfield ¹⁹F chemical shift values are negative. Gas–liquid chromatography was carried out with a Chrom 5 chromatograph using FID and helium as the carrier gas. A stainless-steel column (2500×3 mm) filled with 10% polyphenylmethylsiloxane on Chromatone AW (0.20–0.25 mm) was employed. Preparative GLC was carried out with a PACHV 07 chromatograph fitted with a thermal conductivity detector, a stainlesssteel column (2600×12 mm) filled with 10% polyphenylmethylsiloxane on Chromatone N-AW-HMDS (0.32-0.40 mm) being used with helium as the carrier gas. All boiling and melting points reported are uncorrected.

2.1. Treatment of carboxylic acids with SF_4 . General procedure

An acid and SF_4 were reacted in a stainless-steel cylinder using the relevant amounts of reactant, reaction time and temperature as indicated in Table 1. The gaseous products were released and the liquid residue poured into ice/water. The organic layer was separated, dried over P_2O_5 and purified by distillation or preparative GLC, as necessary. The physical properties and

Table 1					
Reactions	of	carboxylic	acids	with	SF_4

Acid		SF ₄	Reaction cond	Reaction	
No.	mmol	(mmol)	Temperature (°C)	Time (h)	product(s), yield (%)
1	50	418	145	7	2, 70; 3, 8
4	13	198	90	7	5, 70
6	16	200	115	6	7,86
8	50	550	115	8	9 , 80; 10 , 15

^{*}Dedicated to Professor L.M. Yagupolskii on the occasion of his 70th birthday.

^{*}Corresponding author.

analyses of the products are listed in Table 2 and the NMR spectral data in Table 3.

3,5-Bis(trifluoromethyl)-1,2-cis-2,3-trans-3,5-cis-cyclopentane-1,2-dicarboxylic acid (11)

A mixture of compounds 9 and 10 (4.3 g), obtained in the reaction of *trans,cis,trans*-cyclopentane-1,2,3,4tctracarboxylic acid (8) with SF₄, was heated at 100 °C (4 h) in a sealed tube with 4.9 g of 6% oleum and then cooled to 195 K (Dry Ice). Water (1 cm³) was added and the colourless precipitate which formed collected by filtration and recrystallized from water.

3,5-Bis(trifluoromethyl)-1,2-trans-2,3-trans-3,5-cis-cyclopentane-1,2-dicarboxylic acid (12)

3,5-Bis(trifluoromethyl)-1,2-*cis*-2,3-*trans*-3,5-*cis*-cyclopentane-1,2-dicarboxylic acid (11) and excess concentrated hydrochloric acid were heated at 200 °C (2 h) in a sealed tube. The ¹⁹F NMR spectrum showed a 30% conversion of acid 11 to acid 12.

Table 2 Physical properties of compounds prepared

cis-6,8-Bis(trifluoromethyl)-3-aza-transoid-bicyclo-[3,3.0^{1, 5}]octane-2,4-dione (13)

A solution consisting of 0.735 g (2.5 mmol) of compound 11 in ether was added to an excess of ether saturated with dry ammonia. The ammonium salt of 11 was collected by filtration and dried *in vacuo* at 100 °C. It was then heated at 185–200 °C (0.5 h) to allow cyclization. The residue was sublimed at 80–85 °C *in vacuo* (20 mmHg). Yield, 0.68 g (99%). Recrystallization of this product from benzene afforded 13 as colourless crystals.

3. Results and discussion

Fluorination of cis, trans, cis-1,2,3,4-cyclobutanetetracarboxylic acid (1) with SF₄ under relatively forced conditions (7 h at 145 °C) yielded the tricyclic diether 2 as the main product together with smaller amounts of the bicyclic ether 3 (Scheme 1). The fully fluorinated product, cis, trans, cis-1,2,3,4-tetrakis(trifluoromethyl)cyclobutane was not formed.

Fluorination of *trans,trans,trans*-1,2,3,4-cyclobutanetetracarboxylic acid (4), which was obtained by isomerization of acid 1 [5], when conducted at much lower

Compound No.	B.p./mmHg	d_4^{22} (g cm ⁻³)	$n_{\rm D}^{22}$	Elemental analyses			
	[m.p.] (°C)				Found (%)	Molecular formula	Calc. (%)
2	[128]	_	-	C H F	33.7 1.5 53.9	C ₈ H ₄ F ₈ O ₂	33.8 1.4 53.5
3	125	1.650	1.325	C H F	31.2 1.3 61.9	$C_8H_4F_{10}O$	31.4 1.3 62.1
5	[64]	-	-	C H F	29.2 1.2 68.7	$C_8H_4F_{12}$	29.3 1.2 69.5
7	209 (dcc.)	1.715	1.374	C H F	36.0 2.0 50.6	$C_{9}H_{6}F_{8}O_{2}$	36.3 2.0 51.0
9	145	1.615	1.337	C H F	33.6 1.7 59.2	$C_9H_6F_{10}O$	33.8 1.9 59.4
10	[85]	-	-	C H F	36.3 1.9 50.6	$C_9H_6F_8O_2$	36.3 2.0 51.0
11	[171] H ₂ O	-	-	C H F	36.3 2.6 38.7	$C_9H_8F_6O_4$	36.8 2.7 38.8
13	[178] bzI.	-	-	F N	41.3 5.2	$C_9H_7F_6NO_2$	41.4 5.1

Table	3		
NMR	data of	compounds	prepared

Formula	Nucleus No.	Signal struct.	Chemical shift (ppm)	Coupling constants (Hz)
F O F				
	1	AB	60.75	${}^{2}J_{1,2} = 146.9$
F, F	2	AB	80.60	${}^{2}J_{2,1} = 146.9$
F O F				
2				
	1	ha	(7.00	
F, ff F	1 2	bs bd	-67.88 -63.08	${}^{3}J_{2,3} = 140$
	3	bd	- 81.72	$J_{2,3} = 140$ $3J_{3,2} = 140$
3				•3,2 110
H ² CF ₃				
	1	dt	-72.21	${}^{3}J_{1,2} = 6.8$
H CF3	2			${}^{4}J_{1,2} = 1.7$
5	2	bs	3.77	
X_X	1	bd	-60.00	${}^{2}J_{1,2} = 144$
	2	bd	- 78.49	${}^{2}J_{2,1} = 144$
⁴ [−]	3	bd	-61.43	${}^{2}J_{3,4} = 153$
7	4	bd	-71.88	${}^{2}J_{4,3} = 153$
³ F, , , , , , , , , , , , , , , , , , ,				
2 7 7 2	1	bs	- 70.54	
	2	bđ	-63.28	${}^{2}J_{2,3} = 147$
¹ F ₃ C ⁴ CF ₃ 9	3	bd	- 72.81	${}^{2}J_{3,2} = 147$
, Q ,				
$F \rightarrow F$	1	bd	- 76.86	${}^{2}J_{1,2} = 152$
ĨF、人人,F	2	bd	- 69.63	${}^{2}J_{2,1} = 152$
f ^c ^v ^c ⁺	3 4	dm dm	- 58.87 - 76.44	${}^{2}J_{3,4} = 147$ ${}^{2}J_{4,3} = 147$
10	т	GIII	70.77	J _{4,3} – 1 – 7
ноос соон				
2 H H				
	1	d	- 70.35	${}^{3}J_{1,2} = 8.8$
11				
HOOC COOH				
н) Гн	1	d	-66.91	${}^{3}J_{1,3} = 8.7$
² F ₃ C ⁴ ¹ CF ₃ ⁴	1 2	d	-69.57	${}^{3}J_{1,3} = 8.7$ ${}^{3}J_{2,4} = 8.4$
H				
2 2	1	d	70.10	${}^{3}J_{1,2} = 8.5$
	I	u	/0.10	J _{1,2} -0.5
F ₃ C				

Scheme 1.

Scheme 2.

Scheme 3.

temperatures (90 °C) gave only the fully fluorinated product, *trans,trans,trans*-1,2,3,4-tetrakis(trifluoro-me-thyl)cyclobutane (5) (Scheme 2), but no products of 1,3-cyclization or bicyclic and tricyclic ethers were observed.

Fluorination of cis, cis, cis, 1, 2, 3, 4-cyclopentanetetracarboxylic acid (6) with SF₄ at 115 °C yielded the tricyclic diether 7 as the sole product (Scheme 3).

Fluorination of *trans, cis, trans*-1,2,3,4-cyclopentanetetracarboxylic acid (8) with SF_4 at 115 °C yielded the bicyclic ether 9 as the major product together with small amounts of the tricyclic diether 10 (Scheme 4).

The structure of bicyclic ether 9 has been demonstrated by NMR spectroscopy and by acid hydrolysis (oleum) to the corresponding dicarboxylic acid 11. The

latter was converted to the *trans* isomer 12 and to the cyclic imide 13 (Scheme 5).

The possibility of the formation of bicyclic and tricyclic ethers is in agreement with known information that cyclobutane- and cyclopentane-polycarboxylic acids form (or do not form) corresponding polycyclic anhydrides as listed in Scheme 6.

However, in the case of *trans,cis,trans*-1,2,3,4-cyclopentanetetracarboxylic acid (8) only the monoanhydride 17, but not the dianhydride 18, was obtained [7] (Scheme 7).

It should be noted that the formation of the tricyclic ether 10 is the first recorded example of the 1,3-cyclization of cyclic alkanepolycarboxylic acids during fluorination with SF_4 .

References

- L.M. Yagupol'skii, A.I. Burmakov and L.A. Alekseeva, Zh. Obshch. Khim., 39 (1969) 2053.
- [2] A.I. Burmakov, L.A. Alekseeva and L.M. Yagupol'skii, Z. Org. *Khim.*, 6 (1970) 2498.
- [3] W. Dmowski, J. Fluorine Chem., 32 (1986) 255.
- [4] W. Dmowski and R.A. Kolinski, Pol. J. Chem., 52 (1978) 71.
- [5] V.P. Nazaretian, P.I. Ogojko and Yu.M. Pustovit, USSR Pat. 1 541 993 (1989).
- [6] G.W. Griffin, A.F. Velltura and K. Furukawa, J. Am. Chem. Soc., 83 (1961) 2725.
- [7] K. Alder, H.H. Molls and R. Reeber, Justus Liebigs Ann. Chem., 611 (1958) 7.